Electrophoretic deposition of CdSe, C₆₀ and CdSe-C₆₀ clusters.

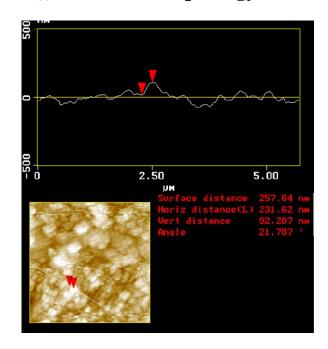
nC₆₀ films on OTE/SnO₂ andOTE/TiO₂ Electrodes.

The procedure adopted was similar to the one adopted earlier for C_{60} films. A 0.20 mL solution of 0.5 mM C_{60} in toluene was injected into a vial of acetonitrile (0.80 ml). This cluster solution (0.1 mM) was transferred to a small cell in which two optically transparent electrodes were kept at a distance of 6 mm using Teflon spacer, and a dc voltage (50 V) was applied using a Fluke 415A high-voltage dc power supply. Within 30-60 s the solution turned colorless as all the C_{60} clusters were deposited as a brown film on the electrode connected to the positive terminal of the source.

 nC_{60} film

CdSe films on OTE/SnO₂ Electrodes.

A similar procedure was followed for plain CdSe, with 0.20 mL of 7.4 µM CdSe in toluene injected into 0.80 mL of acetonitrile and deposited electrophoretically.


CdSe-nC₆₀ films on OTE/SnO₂

A similar procedure was followed for CdSe/nC₆₀, with a 0.20 mL mixture of 7.4 μ M CdSe / 0.5 mM C₆₀ in toluene injected into 0.80 mL of acetonitrile and deposited electrophoretically.

CdSe-nC₆₀ film

nC₆₀ electrode Morphology.

AFM of nC_{60} clusters deposited on SnO_2/OTE , showing average cluster size of ~90 nm. This cluster size is smaller than the one obtained with $CdSe-nC_{60}$ mixed clusters.